FRICTION AND HEAT TRANSFER WITH SIMULTANEOTUS
CONVECTION ON A PERMEABLE SURFACE

V. I. Dubovik UDC 532.526 : 536.244

The velocity and heat transfer fields near a vertical permeable surface with simultaneous
convection are investigated. A solution is found for the boundary layer equations with known
laws of surface temperature and flow velocity change. The transformed boundary layer equa-
tions contain the parameter G/R?, which determines the effect of free convection on friction
and heat transfer for constrained motion. Calculations of friction and heat transfer as func-
tions of draft (suction) with simultaneous convection are presented.

The study of convective heat transfer in the literature is limited to an examination of constrained mo-
tion, where the rates of momentum transfer are large, or to natural convection, where there is a tempera-
ture drop between surface and medium. Little-studied flows with low velocity and temperature difference,
ensuring the action of lifting forces and the free motion accompanying them, which produces an effect on
heat transfer and tangent pressure, are also of interest.

The velocity and temperature fields near a vertical surface are described by the fundamental laws
of conservation of mass, momentum, and energy. The differential equations of an incompressible laminar
boundary layer describing convection for constant physical parameters of the medium with the exception
of density, which is temperature dependent in a term expressing free motion, neglecting viscous dissipa-
tion, have the form

du v
dx ay =0
du ‘Ou u dp
Ugp TV =Vom — 4 T8 (T —Tx)
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with boundary conditions

u=0 v=v, T=T, for y=0
t=Ux TI'=T, for y—> oo (2)

Equation (1) is written for a coordinate system with x axis directed along the surface upward, and y
axis normal thereto; in Eqs. (1) and ) u and v are the axial components of the velocity, v is the kinematic
viscosity, p is pressure, T is temperature, a is the thermal diffusivity coefficient, g is the acceleration
of gravity, B is the coefficient of thermal expansion, and the indices w and « indicate values at the sur-
face and the outer edge of the boundary layer.

For definiteness, we will assume that the surface temperature is greater than that of the medium
(Ty,> T,). We will examine the motion when flow velocity and surface temperature are given by the ex-
pressions

Uyp=0C2™ @)
T, — To = Bz @

where C, B, m, and n are constants.
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cN I With consideration of these expressions we solve Eq. (1), reduc~
ing the equations to ordinary differential equations. The reduction to
| < . . ordinary differential equations with convection is performed with the
¥ \ ' ' aid of the independent variable
Y . N = Cyz* (5)
\ \ o~ and the flow function
b ’ | ¥ = Cyof (n) (6)
such that the conditions
\ 100 A=/ .
¥ i g
: \\\6\ - b=y VT TG (7

0 #5140 13, 4
7=5, V% are fulfilled.

In Egs. (5) and (6) Cy, Cy, &, and S are unknown values, requiring
determination.

Fig. 1

Defining the velocity components according to Eq. (7)

u = CCaz3f (1)
v = — Coz® [of (1) + nBf (n)] (8

together with their derivatives, and substituting in Eq. (1), after simple transformations we obtain equations
in dimensionless form
£ () + (m 4+ D) F () () — 2mf™ (n) + 8[m + - 6(m)] = 0 ©
M)+ Plm+1)f ()& (1) — (4n—2)f (M) 6(n)] =0 (L0)
where 0(n) = (T~ T« )/ (T~ Tw) is the dimensionless temperature,

By T, —T, ) R— Uz

'\72 ’ Y] 1

G =

v
P=-—a-

are the Grashof, Reynolds, and Prandtl numbers, and the prime denotes differentiation with respect to 7.
The boundary conditions in the new variables take on the form

f0) =0, f, =const, 8 =1 for =10
f o)y =2, 8=0 for n—> o

A transformation to ordinary differential equations is possible if
n=2m—1 {i1)
and the unknown values in Egs. (5) and 8) are defined as follows:

a=m+1/2=@0+3)/4 p=m—-1)/2=@m—-1)]4
Cy = 0.5(C]v)%, C, = (Cv)°*

The boundary condition fy,=const, which is necessary for the transformation, indicates that vy~
x{m-1)/2 [1, 2]. From the second equation of Eq. (8) we find the draft (suction) parameter

2 —
fo=— (m—‘,—f)JUw R

In the transformed motion equation (9) the parameter G/R%= A appeared, reflecting the effect of free
convection on friction and heat transfer. For A=0, Eqgs. (9) and (10) describe constrained convection.

The system of ordinary equations (8) and (10) is solved by the numerical iteration method, eliminat-
ing the boundary probiems which occur at each iteration [3]. As a resulf, dimensionless velocily and tem-
perature profiles in the boundary layer with convection and draft (suction) are obtained for P=0.7, m=0.5,
and n=0.

In Fig. 1 dimensionless temperature profiles in the boundary layer with convection are compared with
the data of [41(1), inwhichthe problem of convection near an impermeable surface was solved for two values ..
of A,
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The surface friction, under the condition that mo-
tion of the medium from the porous surface occurs, is
given by the expression [1]

Ty = B (0u [ 0y)y=p — p¥,Ux

This relationship in the transformed variables perinits
obtaining the dimensionless friction coefficient

e;RY = 0.5 (0) + (m + 1) fo (¢r = 2%, / (pU).  (A2)

To calculate the surface friction by Eq. (12) the
value of £7(0) was calculated with a computer for various
parameter values, and is presented in Fig. 2 in the form
of the ratio f"/f"(0) at P=0.7, where f,"(0) is taken
for a nonpermeable surface, and for 1, A=0; 2, A=1; 3,
A=10.

The thermal flux with convection on the vertical
surface is defined by the equation

g=— A(0T ] 0y)y=o 13)

where A is the coefficient of thermal diffusivity.

The data on heat transfer are represented by the
local heat transfer coefficient and the local Nusselt num-
ber

a = q/(Tw_" Tm), N = (OC.Z‘) /A‘

On the basis of this, the heat transfer will be
N = — 0.5R%%9’ (0) (14)

where the values of g'(0) are calculated for various val-
ues of the defining parameters A and f,.

In Fig. 3 results of heat transfer calculations with
convection are shown: curve 1 corresponds to A=0; 2,

A=1; 3, A=10; and 4, A=100, for P=0.7. The Nusselt number N; characterizes heat transfer near an im-

permeable surface.

A comparison of the results (curve 1) of heat transfer on an impermeable surface for P=0.7 with the
data of [4] (1) is presented in Fig. 4. Calculated data for heat transfer are shown with draft (f;=—0.1 and
—0.3, curves 2, 3) and suction (fiy=0.1 and 0.3, curves 4, 5). It is evident from analysis of these curves
that the intensity of heat transfer increases with growth in free convection, which is explained by increase

in convective velocities.

Starting from the fact that the value of the friction coefficient with convection is more than 5% differ-
ent from the data with purely constrained flow, a criterion can be obtained for defining the limit of convec-

tion in caleulating surface friction

G ] R* > 0.03f, + 0.06

(L5)

To determine the limit of convection with draft (suction) in calculating heat transfer we have

G/ R? > 0.57f, 4+ 0.3

s)

With values of G/R? lower than those calculated in Egs. (15) and (16) in problems of calculating fric-
tion and heat transfer, the effect of free convection can be neglected.
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